ผลของสายพันธุ์มะเขือเทศและวิธีการสกัดไลโคบินต่อสมบัติทางเคมี และกายภาพของมะเขือเทศผง กานดาวดี โนชัย' และ จิรภา พงษ์นันตา ${ }^{2}$
 มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา เลขที่ 202 หมู่ 17 ต.พิชัย อ.เมือง จ.ลำปาง 52000

บทคัดย่อ

วัตถุประสงค์ของงานวิจัยนี้คือเพื่อศึกษาสมบัติของมะเขือเทศพันธุธพื้นเมือง 5 สายพันธุ์ (พื้นเมืองเบอร์ 1 พื้นเมืองเบอร์ 2 เพชรชมพู สีดา และ อีเป๋อ) และผลของวิธีการสกัดไลโคปินที่มีต่อสมบัติทางเคมีและกายภาพของ มะเขีอเหศผง เมื่อิเคราเห์ส่วนประกอบทางเคมีพบว่ามะเขือเทศแต่ละพันธุ์ มีปริมาณความชื้น คาร์โบไฮฮเดรต ไลโคปิน และค่าสี แตกต่างกันอย่างมีนัยสำคัญททางงถิติ ($\mathrm{p} \leq 0.05$) ส่วนเริมาณโปรรตีน ไขมัน เส้นใย และ เถ้า ไม่มีความ แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p>0.05$) โดยมะเขือเทศพันธุ้อีเป๋อมีปริมาณไลโดบินสูงสุด (67.61 มิลลิกรัมต่อ 100 กรัมน้ำนัักมาตรฐานแห้ง) จีงคัดเลือกไปผลิตมะเขือเทศผงที่มีไลโคคินสสูง โดยนำมะเขือเทศไปลววกที่ 95 องศาเชลเชียส หรีอ 121 องศาเซลเชียส เป็นเวลา 5 หรือ 10 นาที แยกเนื้อมะเขือเทศต้วยเครื่องเครื่องบีบแบบแรงอัด หรือแบบเกลียวหมุน ระดับอนไหม์เพคติเนสและเซลลูเลสทีใช้ในในารสกัดไลโดคินเป็น $0.1,0.2$ หรือ $0.3 \% \mathrm{v} / \mathrm{w}$ ระยะเวลาการย่อยมะเขีอเทศเป็น 1,2 และ 3 ชั่วมง และทดสอบระดับมอลโตรเด็กซ์ตรินที่เหมาะสำหรับการผลิตมะเขือเทศผงแบบเช่เยือกแข็งที่ $0,5,10,15$ หรือ $20 \% \mathrm{w} / \mathrm{w}$ ผลการศึกษาพบว่าวิธีารแยยกเนื้อมะเขือเทศ วิธีกรรสกัดไลโคปินดัวยเอนไซม์ แลรระดับมอลโตเด็กช์ตริน มีผลอย่างมีน้ยสำคัญทางสลิติ ($p \leq 0.05$) ต่อปริมาณไลโคปินในมะเขีอเทศผงที่ทำแห้งแบบแช่เยือกแข็ง และการเติม มอลโตเด๊กซ์ตรินร้อยละ 5 โดยน้ำหนัก ได้มะเขือเทศผงที่มีคุณกาพดี โดยมีปริมาณไลโคิินเท่ากับ 65.86 มิลลิกรัมต่อ กรัม ตัวอย่างมาตรฐานแห้ง

คำสำคัญ : เอนไซม์เพคทิเนส / เซลลู่เลมอลโตรเด๊กช์ตริน / การทำแห้งแบบแช่เืือกแข็ง

[^0]
Effects of Tomato Variety and Lycopene Extraction Methods on Physicochemical Properties of Tomato Powder

Kandawadee Nochai ${ }^{1}$ and Jirapa Pongjanta ${ }^{2^{*}}$
Rajamangala University of Technology Lanna, 202 Moo 17 Phichai Muang Lampang 52000, Thailand

Abstract

This experimental investigation describes properties of five local tomato fruit verities (No. 1, No. 2, Phetsompoo, Srida and Eepuea) and the effects of lycopene extraction methods on the physicochemical properties of tomato powder. Physiochemical compositions showed significant differences ($\mathrm{p}<0.05$) for moisture content, carbohydrate, lycopene content and color value in relation to the each tomato variety. The tomatoes (Eepuea variety) had the highest lycopene content ($67.61 \mathrm{mg} / 100 \mathrm{~g}$ dry basic), thus it was used to produce tomato powder with high lycopene content. The tomatoes were blanched at 95 and $121^{\circ} \mathrm{C}$ for 5 and 10 min and then separated either by a hydraulic press or a screw press to produce tomato pulp. The tomato pulps were analyzed for extraction yield, color value, TSS, and lycopene content. The effects of concentration ($0.1,0.2$ and 0.3%) and hydrolysis time (1,2 and 3 h) of pectinase and cellulase enzymes on tomato puree properties were studied. In addition, the optimum levels of added maltodextin ($0,5,10$, 15 and $20 \% \mathrm{w} / \mathrm{w}$) on the quality of freeze dried tomato powder were investigated. Results of tomato powder production showed that tissue separation, enzymatically treated and freeze dried treatments exhibited significant ($\mathbf{p}<0.05$) effect on lycopene content of tomato powder. The results indicated that the addition of $5 \%(\mathrm{w} / \mathrm{w})$ maltodextrin produced good quality tomato powder. The lycopene content of the tomato powder was $65.86 \mathrm{mg} / 100 \mathrm{~g}$ dry sample.

Keywords : Cellulase / Freeze dried / Maltodextrin / Pectinase

[^1]
บทนำ

ผลมะเขือเทศ (Lycopersicon esculentum Mill.) มีสารแคโรทีนอยด์อยู่มากซึ่งเป็นรงควัตถุสีส้มแดง 2 ชนิด คือ บีตา-แคโรทึน (Beta-carotene) และไลโคปิน (Lycopene) ที่มีสมบัติไม่ละลายน้ำแต่ละลายได้ในน้ำมัน และตัวทำละลายอินทรีย์ ไลโคปึนในผลมะเขือเทศพบ มากกว่าร้อยละ 85 ของรงควัตถุทั้งหมด [1] ไลโคปินเป็น ไฮโดรคาร์บอนที่ไม่มีวงแหวนอยู่ในโมเลกุล จัดอยู่ในกลุ่มย่อย ของแคโรทีนอยด์ที่มีโครงสร้างหลักประกอบด้วยไอโชพรีน ซึ่งเป็นไดอีน (diene) $\left[\mathrm{CH}_{2}=\mathrm{C}-\left(\mathrm{CH}_{3}\right)-\mathrm{CH}=\mathrm{CH}_{2}\right]$ มาเรียง ต่อกัน 8 หน่วย มีจำนวนคาร์บอนในโมเลกุล 40 อะตอม มี สูตรเป็น $\mathrm{C}_{40} \mathrm{H}_{56}$ ไลโคป็นมีสมบัติเป็นสารต้านอนุมูลอิสระ ที่สามารถยับยั้งอนุมูลอิสระได้อย่างมีประสิทธิภาพและ ป้องกันการก่อตัวของเซลล์มะเร็งในต่อมลูกหมาก ปอด และกระเพาะอาหาร [2] มีรายงานพบว่า มะเขือเทศเชอรี่ พันธุ์ 818 cherry มีปริมาณสารต้านอนุมูลอิสระในรูปของ ไลโคปิน แอสคอบิกและฟีนอลสูง [3] และพบสารไลโคปิน บีต้าแคโรทีนลูทีนฟีนอลทั้งหมด กรดแอสคอบิก (AsA) กรด dehydoascorbic (DHA) และวิตามินชีทั้งหมด (AsA+DHA) ในมะเขีอเทศ 6 สายพันธุ์ $[1]$ นอกจากนี้ ยังมีการศึกษาการให้อาหารเสริมไลโคปินเป็นแคปชูล 15 มิลลิกรัม/วัน ในเพศชาย เป็นเวลา 8 สัปดาห์ พบว่ามีผลให้ ปริมาณไลโคปินในน้ำเหลืองเพิ่มสูงขึ้น และทำให้ลดภาวะ ที่มี อนุมูลอิสระมาก (oxidative stress) ป้องกันการ ทำลายดีเอ็นเอ โปรต็น ไขมันและโมเลกุลเล็กอื่นๆ ได้ [4]

ไลโคปีนในมะเขือเทศทั้งผลส่วนใหญ่พบในระดับร้อยละ 48 [5] แต่การสกัด ไลโคปินทำได้ยากเนื่องจากมะเขือเทศ มีผนังเชลล์ที่แข็ง เนื่องจากเป็นองค์ประกอบของเซลลูโลส และเพคติน โดยเพคตินเป็นส่วนประกอบที่สำคัญของผนัง เซลล์จับกับเซลลูโลส เฮมิเชลลูโลส และไกลโคโปรตีน ของ ผนังเชลล์พืช โดยภายในบรรจุโครโมพลาสต์ที่มีรงควัตถุ ที่ประกอบด้วยไลโคปีนและแคโรทีน [6] ได้มีการศึกษา การสกัดไลโคปินจากผลมะเขีอเทศ พบว่าซนิดของเอนไซม์ และเวลาในการย่อย มีผลต่อปริมาณไลโคปินที่สกัดได้ $[7]$ และมีรายงานผลการสกัดไลโคปิน จากผงกากมะเขือเทศ โดยการย่อยด้วยเอนไซม์เพคติเนสนาน 50 นาทีร่วมกับ การสกัดดัวยเอทิลอะชีเตดพบว่าได้ ปริมาณไลโคปินสูงถึง 80.21 มิลลิกรัม/ 100 กรัม ตัวอย่าง [8, 9]

Rustia [10] รายงานการศึกษาการผลิตมะเขือเทศผง จากเนื้อมะเขือเทศสุก และทำแห้งด้วยวิธีการทำแห้งแบบ พ่นฝอย พบว่า คุณภาพของมะเขือเทศผงขึ้นอยู่กับปริมาณ สารเพิ่มปริมาณ โดยพบว่าการเติมมอลโตเด๊กตรินที่ มากกว่าร้อยละ 40 ของเนื้อมะเขือเทศ มีผลให้สมบัติการ ดูดน้ำกลับคืนลดลง ส่วนการใช้น้ำตาลชูโครส พบว่าช่วย ปรับปรุงคุณภาพในด้านการกระจายตัว และการละลาย ได้ แต่ดูดความชื้นเร็วเมื่อเติมน้ำตาลซูโครสมากกว่า ร้อยละ 20

มะเขือเทศพันธุ์พื้นเมืองมีผลขนาดเล็ก แต่มีสีแดงทั้ง ผล ให้ผลผลิตต่อไร่สูง $(3,463$ กิโลกรัม) มะเขีอเทศพันธุ์ พื้นเมืองยังไม่ได้มีการใช้ในระดับอุตสาหกรรมมากนัก ใน ช่วงดดูกาล จึงมีราคาต่ำ ผลผลิตล้นตลาด [11] มะเขือเทศ นี้จึงน่าจะนำไปสกัดไลโคปิน เพื่อเพิ่มโอกาสการนำไปใช้ ประโยชน์ในเชิงการค้า งานวิจัยนี้จึงศึกษาผลของสาย พันธุ์มะเขือเทศพื้นเมือง และกรรมวิธีการผลิตมะเขือเทศ ผงที่มีไลโคปินเป็นองค์ประกอบ เพื่อเป็นแนวทางในการใช้ ประโยชน์มะเขีอเทศพื้นเมือง ในเชิงอุตสาหกรรม อันจะ ส่งเพิ่มต่อการเพิ่มมูลค่ามะเขือเทศพื้นเมืองต่อไป

2. วิธีการทดลอง

วัสดุที่ใช้ในงานวิจัย เช่น มอลโตเด๊กชตริน (DE 11-15) จากบริษัท Thai Foods Product International Co., Ltd., ประเทศไทยสารเคม์ใช้เกรดวิเคราะห์จากบริษัท Merck, ประเทศเยอรมันนีเอนไชม์เพคติเนส (Pectinase UltraSPL), และเอนไชม์เซลลูเลส (Cellulase enzyme, Celluclast, $700 \mathrm{EGU} / \mathrm{g}$) เกรดอาหารจากบริษัท Novozymes ประเทศเดนมาร์ก

2.1 ศึกษาสมบัติทางเคมีและกายภาพของมะเขือเทศ

 พื้นเมืองมะเขือเทศพื้นเมือง 5 สายพันธุ์ คือ พื้นเมือง เบอร์ 1 พื้นเมืองเบอร์ 2 เพษรชมพู สีดาส้มตำ และ อีเป๋อ จากแปลงทดลอง สถาบันวิจัยเทคโนโลยีเกษตร มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ช่วงเวลาการ เก็บเกี่ยว คือ เดือนมกราคม - กุมภาพันธ์ 2555 หลัง การเก็บเกี่ยว นำไปล้างทำความสะอาด หั่นครี่งผล ปั่นให้ เป็นเนื้อเดียวกันด้วยเครื่องผสมความเร็วสูง (ยี่ห้อ KYUSEN รุ่น HW - CH1, Thailand) นาน 10 นาที

นำไบ่วิเคราะห์ปริมาณความชื้น โปรตีน ไขมัน เถ้า เส้นใย ทั้งหมด คาร์โบไฮเดรต ตามวิธีการใใน $A O A C[12]$ ตรวจ สอบค่าสีด้วยระบบ $\operatorname{CIE}\left(L^{*}, a^{*}\right.$ และ $\left.b^{*}\right)$ โดยใช้เครื่อง Minolta Chromameter รุ่น CT300, ประเทศญี่ปุ่น ปริมาณของแข็งที่ละลายได้ทั้งหมด Hand refractometer (ATAGO, ประเทศญี่ปุ่น) ค่าความเป็นกรด-ด่าง (pH) โดย ใช้เครื่องวัดรุ่น C 831 T (Consort, ประเทศเบลเยี่ยม) และ ปริมาณไลโคปินโดยวิธีสเปคโตรโฟรโตรมิเตอร์ [13] โดยการสกัดไลโคปินด้วย สารละลายที่มีส่วนผสมของสาร ละลายอะชีโตนที่มี BHT $0.05 \%(\mathrm{w} / \mathrm{v})$: เอทานอล : เฮกเซน $(5: 5: 10)$ ทำการแยกส่วนด้านบนที่เป็นสารสีแดง ไปวัดค่าดูดกลีนแสงที่ความยาวคลื่น 503 นาโนเมตร ด้วยเครื่องสเปคโตรโฟรโตรมิเตอร์ ยี่ห้อ PG Instrument Limited รุ่น T80, China โดยใช้เฮกเซนเป็นแบลงค์ (blank) คำนวณปริมาณไลโคปิน (มิลลิกรัม/100 กรัม) $=$ $A_{503} \times 31.2 /$ น้ำหนักตัวอย่าง (กรัม) โดย 31.2 คือค่า สัมประสิทธิ์เอกซ์ทิงชันของโมเลกุลไลโคปินในเฮกเซน $\left(17.2 \times 10^{4} \mathrm{M}^{-1 \times} \mathrm{cm}^{-1}\right)$ ที่มวลโมเลกุล (536.9 กรัม) และ การเปลี่ยนหน่วยเป็นมาตรฐานแห้ง

นำข้อมูลผลการวิเคราะห์สมบัดิทางกายภาพและ เคมีของมะเขือเทศพื้นเมือง มาวิเคราะห์ผลทางสถิติตาม แผนการทดลองแบบสุ่มสมบูรณ์ จำนวน 3 ซ้ำ วิเคราะห์ เปรียบเทียบความแตกต่างระหว่างสายพันธุ์โดยวิธี Duncan New Multiple Range Test เพื่อคัดสายพันธุ์ ที่มีไลโคปินสูงไปศึกษาต่อไป

2.2 ศึกษากรรมวิธีการเตรียมเนื้อมะเขือเทศที่เหมาะสม สำหรับการสกัดไลโคปิน

นำมะเขือเทศที่มีปริมาณไลโคปินสูงสุดที่คัดเลือก ได้จากการทดลองที่ 2.1 ไปล้างให้สะอาด นำไปลวกที่ อุณหภูมิที่ต่างกัน 2 อุณหภูมิคือ 95 และ 121 องศา เชลเซียส ลวกนาน 5 และ 10 นาที แล้วบีบคั้นด้วย เครื่องมือ 2 ชนิดคือ เครื่องบีบแบบแรงอัด (hydraulic press) และแบบเกลียวอัด (screw press) ได้ส่วนของเนื้อ มะเขือเทศไปตรวจสอบปริมาณผลผลิตทีไได้ทั้งหมด ค่าสี ปริมาณของแข็งที่ละลายได้ทั้งหมด ค่าความเป็นกรด-ด่าง และปริมาณไลโคปินตามรายละเอียดในวิธีการ ข้อ 2.1

นำข้อมูลทีได้ไปวิเคราะห์ทางสถิติตามแผนการทดลองแบบ แฟคทอเรียล 3 ปัจจัยๆ ละ 2 ระดับ ทำการทดลอง 3 ช้ำ $(2 \times 2 \times 2)$ และเปรียบเทียบค่าเฉลี่ยโดยใช้ Duncan New Multiple Range Test เพื่อคัดเลีอกวิธีการที่ได้ผลผสิตที่มี ปริมาณไลโคปินสูงสุดไปศึกษาในตอนต่อไป

2.3 ศึกษาระดับของเอนไซม์และเวลาที่เหมาะสมใน

 การสกัดไสโคปินจากเนื้อมะเขือเทศนำเนื้อมะเขือเทศที่แยกได้ไปย่อยด้วยเอนไชม์ เพคติเนสและเซลลูเลสที่ระดับแตกต่างกันคีอความเข้มข้น ร้อยละ 0.10 .2 หรือ 0.3 นาน 12 หรือ 3 ชั่วโมง ที่ อุณหภูมิ 50 องศาเซลเซียส หลังจากครบเวลาที่กำหนด หยุดการทำงานของเอนไชม์ด้วยการต้มในอ่างน้ำร้อนที่ อุณหภูมิ 95 องศาเชลเชียส นาน 5 นาที ทำให้เย็น ทันที ตรวจสอบปริมาณผลผลิตที่ได้ทั้งหมด ค่าลี ปริมาณ ของแข็งที่ละลายได้ทั้งหมด ค่าความเป็นกรด-ด่าง และ ปริมาณไลโคปินตามวิธีการ ในข้อ 2.1 วิเคราะห์ทางสถิติ ตามแผนการทดลองแบบแฟคทอเรียล 2 ปัจจัยๆ ละ 3 ระดับ (3×3) ทำการทดลอง 3 ซ้ำ แล้วเปรียบเทียบค่า เฉลี่ยโดยใช้ Duncan New Multiple Range Test เพื่อ คัดเลีอกวิธีการแยก สกัดส่วนประกอบที่ให้ปริมาณไลโคปิน สูงสุดไปศึกษาต่อไป

2.4 ศึกษาปริมาณการใช้มอลโตเด็กซ์ดรินที่เหมาะสม ในการผลิตมะเขือเทศผง

ใช้เนื้อมะเขือเทศที่สกัดมาจากข้อ 2.3 ไปศึกษาการ ใช้มอลโตรเด๊กซ์ตริน (maltodextrin) ผสมลงไป 2 ระดับ คือ ร้อยละ 051015 และ 20 ของน้ำหนักของมะเขือเทศ ที่สกัดได้ เปรียบเทียบกับสิ่งทดลองควบคุม แล้วนำไป อบแห้งด้วยเครื่องอบแห้งแบบแช่เยือกแข็ง (Freeze dryer) รุ่น FD-1, (Japan) โดยใช้อุณหภูมิในการแช่เยือกแข็ง ที่ -35 องศาเซลเซียส และที่ความดันสูญญากาศต่ำกว่า 132 Pa และ ความดันระดับสูญญากาศสูง เท่ากับ 132 mPa นาน 8 ชั่วโมง หลังอบแห้งบดเป็นผง นำมะเขือเทศผงทีได้ ไปวิเคราะห์ค่าความหนาแน่นรวมตามกรรมวิธีใน Jinaponget et.al. [14] ความสามารถในการกระจายตัวของผง [13] ค่าการพองตัว และค่าความสามารถในการละลาย [15]

3. ผลการทดลองและอภิปรายผล

3.1 สมบัติทางเคมีและทางกายภาพของมะเชือเทศ พื้นเมือง

สมบัติทางเคมีและกายภาพของผลมะเขือเทศ พื้นเมือง 5 สายพันธุ์เสดงในตารางที่ 1 และ 2 พบว่า ปริมาณโปรตีน ไขมัน เส้นใยทั้งหมด และ เถ้า มีปริมาณ ใกล้เคียงกันโดยไม่มีความแตกต่างกันอย่างมีนัยสำคัญ ทางสลิติ ($p>0.05$) พบในช่วงร้อยละ $1.22-1.84$ 0.02-0.16 1.53-1.92 และ $0.44-0.55$ ตามลำดับ ส่วนปริมาณ ความซื้นและไริมาณคาร์ไบไฮเดรต พบว่าแตกต่างกัน อย่างมีนียสำคัญทางสถิดิ ($\mathrm{p} \leq 0.05$) พบในช่วงร้อยละ $92.80-94.16$ และ $2.01-3.34$ ตามลำดับชังงค่าทางเมีของ ผลมะเขือเทศที่ศึกษาพบว่ามีค่าใกล้เคียงกับในรายงาน [16] ที่พบปริมาณความชี้น โปรตีน ไขมัน เส้นใยทั้งหมด เถ้า คาร์ไปไฮเดรดร้อยละ $93.201 .100 .301 .20 \quad 0.70$ และ 3.50 ตามลำดับ

ส่วนด้านค่าสีของผลมะเขีอเทศสุก พบว่ายยู่ใน กลุ่มสีแดงส้ม พบมีค่าความสว่างสี (L๋) แตกต่างกันอย่าง มีนัยสำวัญทางสถิดิ ($\mathrm{p} \leq 0.05$) พบในช่วง $31.47-34.16$ (ตารางที่ 2) โดยผลมะเขีอเทศพันธุ์อีเปีอมีคาสูงสุดส่วน ค่าความเป็นสีแดง $\left(a^{*}\right)$ และค่าความเป็นสีเหลือง $\left(b^{*}\right)$ พบว่าไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p>0.05$) ระหว่างสายพันธุ์ พบในช่วง $16.67-20.74$ และ 24.35-26.32 ตามลำดับ ชึ่งมีค่าใกล้เคียงกับรายงาน ที่ผ่านมา [17, 18] ที่พบในช่วง 20.29-28.20 และ
$21.20-27.90$ ตามลำดับชึ่งค่าความเป็นสีแดงของผล มะเขือเทศสุกนั้นมีรายงานว่าขึ้นอยู่กับปริมาณไลโคปิน และเบต้าแคโรทีทที่มีความแปรผันไปตามสายพันธุ์และ สภาพแวดล้อมในการปปูก $[18]$ ในด้านปริมาณไลโคีีนใน ผลมะเขือเทศพื้นเงื่องทั้ง 5 สายพันธุ้ั้ พบว่ามีความแตก ต่างกันอย่างมีนียสำคัญทางสเิติ ($p \leq 0.05$) มึในช่วง $42.39-$ 67.61 มิลลิกรัม/100 กััม มาตรฐานแห้ง โดยผลมเเขือเทศ พันธุ์เป๋อ มีปริมาณไลโคโินมากที่สุดรองลงมาคือ พันธุ์ พื้นเมืองเบยร์ 2 ส่วนมะเขือเทศพันธุ์สีดามีปริมาณต่สุด อย่างไร็็ตามพบว่าปริมาณไลโคปิน ในการศึกษานี้มีค่าููง กว่ารายงานที่ผ่านมา [19] ที่รายงานว่าผลมะเขือเทศสด มี ปริมาณไลโคบินในช่วง $21.03-47.44$ มิลลิกรัม/100 กรัม มาตรฐานแห้ง

ผลการศึกษาค่าสัมประสิทธิ์สหสัมพันธ์ระหว่าง สมบัติทางเคมี กายภาพของเนื้อมะเขีอเทศสุก 5 สายพันธุ์ (ตาราง 3) พบว่าค่าความเป็นสีแดง $\left(a^{*}\right)$ มีความสัมพันธ์ ในทางบวก อย่างมีนัยสำคัญยิ่งในทางสถิติ ($p \leq 0.05$) กับ ปริมาณไลโคปิน โตยมะเขือเทศีี่มีค่าความเป็นสีแดงสุก มีแนวโนัมของค่าปริมาณไลโคปินสูงขึ้นตามลำดับ ดังต้วอย่างมะเขือเทศพันธุ์อีเป๋อ มีปริมาณไลโคบินสูง ส่งผลให้ค่าความเป็นสีแดงสูงตาม ดังนั้นในการึึกษานี้ จึงคัดเลือกมะเขือเทศพันจุ้อีเป๋อที่มีปริมาณไลโดปินสูงสุด ไปใช้ในการศึกษากรรมวิธีการเตรียมเนื้อมะเขือเทศ ต่อไป

ตารางที่ 1 ส่วนประกอบทางเคมีในเนื้อมะเขือเทศพื้นเมือง 5 สายพันธุ์

สายพันธุ์ มะเขือเทศ	ส่วนประกอบทางเคมี (\%) (น้ำหนักฐานเปียก)					
	ความชื้น	โปรตีน ns	ไขมัน	เส้นใย ns	เถ้า ns	คาร์โบไฮเดรต
พื้นเมืองเบอร์ 1	$93.54 \pm 0.4{ }^{\text {ab }}$	1.46 ± 0.2	0.05 ± 0.0	1.76 ± 0.1	0.55 ± 0.0	$2.63 \pm 0.2 \mathrm{ab}$
พื้นเมืองเบอร์ 2	$92.80 \pm 0.3{ }^{\circ}$	1.42 ± 0.2	0.02 ± 0.0	1.92 ± 0.1	0.47 ± 0.0	$3.37 \pm 0.1^{\text {a }}$
เพชรชมพู	$94.16 \pm 0.3^{\text {a }}$	1.84 ± 0.2	0.02 ± 0.01	1.53 ± 0.1	0.44 ± 0.0	$2.01 \pm 0.1^{\circ}$
สีดส้มตำ	93.73 ± 0.2^{2}	1.52 ± 0.1	0.16 ± 0.0	1.91 ± 0.2	0.39 ± 0.0	$2.43 \pm 0.0{ }^{\text {b }}$
อีเป๋อ	$93.34 \pm 0.1^{\text {b }}$	1.22 ± 0.3	0.05 ± 0.0	1.65 ± 0.1	0.43 ± 0.0	$3.34 \pm 0.1{ }^{\text {a }}$

ตารางที่ 2 ค่าสี ค่าความเป็นกรด-ด่าง ปริมาณของแข็งที่ละลายได้ทั้งหมด และปริมาณไลโคปินใน มะเขือเทศ พื้นเมือง 5 สายพันธุ์

สายพันธุ์ มะเขือเทศ	ค่าสี			pH	TSS (${ }^{\circ}$ Brix)	$\begin{aligned} & \text { Lycopene } \\ & \text { (} \mathrm{mg} / 100 \mathrm{~g} \text { dry } \\ & \text { basic) } \end{aligned}$
	L^{*}	a^{*}	b^{*}			
พื้นเมืองเบอร์ 1	$32.33 \pm 1.1^{\text {ab }}$	$19.74 \pm 3.8{ }^{\text {bo }}$	$26.16 \pm 1.3^{\text {ns }}$	4.02^{ns}	$4.65{ }^{\text {ns }}$	$55.02 \pm 5.29^{\circ}$
พื้นเมืองเบอร์ 2	$31.47 \pm 1.3^{\text {b }}$	$20.74 \pm 1.4{ }^{\text {b }}$	24.53 ± 1.2	4.22	4.65	$56.12 \pm 8.32^{\circ}$
เพชรชมพู	$34.16 \pm 1.5^{\text {a }}$	$16.67 \pm 4.1^{\text {d }}$	24.35 ± 0.9	4.03	4.55	$46.56 \pm 6.31^{\text {e }}$
สีดาส้มตำ	$33.41 \pm 1.2^{\text {ab }}$	$19.81 \pm 4.6{ }^{\text {bo }}$	24.72 ± 1.7	4.07	4.65	$42.39 \pm 3.80{ }^{\text {d }}$
อีเป๋อ	$34.00 \pm 1.4^{\text {a }}$	$23.84 \pm 3.6{ }^{\text {b }}$	26.32 ± 2.7	3.94	4.90	$67.61 \pm 5.90{ }^{\text {a }}$

"ะไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p>0.05$)
a. .. อักษรที่ต่างกันในแนวตั้งมีความแตกต่างกันอย่างมีนัยสำคัญทางสลิติ ($p \leq 0.05$)

ตารางที่ 3 ค่าสหสัมพันธ์ระหว่างสมบัติทางกายภาพและทางเคมีในมะเขือเทศบดพันธุพื้้นเมือง จำนวน 5 สายพันธุ์

	L^{*}	a^{*}	b^{*}	pH	TSS	Lycopene
L^{*}	-	$-0.631^{* *}$	0.332*	-0.426^{\star}	0.131*	-0.176^{*}
a^{*}		-	-0.223^{*}	0.132^{*}	0.103*	0.559**
b^{*}			-	-0.303*	0.068 ${ }^{\text {* }}$	-0.005*
pH				-	-0.447^{*}	-0.197^{*}
TSS					-	0.178*
Lycopene						-

[^2]3.2 ผลของกรรมวิธีการเตรียมเนื้อมะเขือเทศที่ เหมาะสมสำหรับการสกัดไลโคปิน

ผลของกรรมวิธีการเตรียมเนื้อมะเขือเทศที่เหมาะ สำหรับการสกัดไลโคปินต่อปริมาณรัอยละของผลผลิต ค่าสี และปริมาณไลโคปิน แสดงในตารางที่ 4 และรูปที่ 1 พบว่าปัจจัยด้านอุณหภูมิ และเวลาในการให้ความร้อน ไม่มีผลอย่างมีนัยสำคัญทางสถิติ $(p>0.05)$ ต่อปริมาณ ร้อยละของผลผลิต ค่าสี และปริมาณไลโคปิน แต่ชนิดของ เครื่องมือแยกสกัด และปัจจัยร่วมระหว่าง อุณหภูมิ-เวลา ในการให้ความร้อน และชนิดของเครื่องมือที่ใช้ในการแยก เนื้อมะเขือเทศมีผลอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p} \leq 0.05$) พบว่าการลวกที่อุณหภูมิ 95 องศาเซลเซียส นาน 10 นาที แล้วแยกเนื้อมะเขือเทศด้วยเครื่องแยกแบบเกลียวหมุน มีปริมาณไลโคปีนมากที่สุด $(44.65$ มิลลิกรัม $/ 100$ กรัม

มาตรฐานแห้ง) มีปริมาณผลผลิตที่ได้ร้อยละ 84.50 และ มีค่าความสว่างของสี ค่าความเป็นสีแดง และค่าความเป็น สีเหลือง ที่ระดับ $22.66 \quad 15.70$ และ 21.84 ตามลำดับ ซึ่งปริมาณไลโคปินที่สูงนี้ เป็นผลมาจากเครื่องแยกแบบ เกลียวอัด ทำให้เซลล์เนื้อเยื่อมะเขือเทศแตกหลุดออกมา มากกว่าเครื่องบีบแบบแรงอัดที่บีบเนื้อมะเขือเทศผ่าน ผ้ารองมีเนื้อมะเขือเทศออกมาน้อยจึงมีปริมาณไลโคปินต่ำ ชึ่งมะเขือเทศพันธุ์พื้นเมืองที่ใซ้ในการวิจัยนี้มีผิวเปลือก นอกที่บางและพบ รงควัตถุสีแดงในส่วนของเนื้อมะเขือ เทศมากดังนั้นจึงคัดเลือกวิธีการเตรียมเนื้อมะเขือเทศ โดย การลวกที่อุณหภูมิ 95 องศาเชลเซียส นาน 10 นาที แล้ว แยกเนื้อมะเขือเทศด้วยเครื่องแยกแบบเกลียวหมุนไปเป็น วัตถุดิบในการศึกษาสกาวะที่เหมาะสมในการสกัดไลโคปิน ด้วยเอนไซม์ต่อไป

ตารางที่ 4 ผลของอุณหภูมิและเวลาในการให้ความร้อน และชนิดเครื่องมือแยกสกัดเนื้อมะเขือเทศ ที่มีต่อปริมาณผลผลิตที่สกัดได้ ค่าสีและปริมาณของแข็งที่ละลายได้ทั้งหมดในเนื้อมะเขือเทศ

[^3]
a.อักษรที่ต่างกันมีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p} \leq 0.05$)

รูปที่ 1 ผลของอุณหภูมิและเวลาในการให้ความร้อน และชนิดเครื่องมีอแยกสกัดเนื้อ มะเขือเทศที่มีต่อปริมาณไลโคบินในเนื้อมะเขีอเทศ
3.3 ผลซองระดับเอนไซม์และเวลาที่เหมาะสมในการ สกัดไลโคบินจากเนื้อมะเขือเทศ

ผลการเปรียบเทียบประสิทธิภาพการย่อยสกัด ไลโคปินจากเนื้อมะเขือเทศ ที่แยกได้จากวิธีการในการ ทดลองที่ 3.2 ด้วยเอนไซม์เพคติเนส และเซลลูเลส ที่ระดับความเข้มข้นและระยะเวลาในการย่อยที่ต่างกัน แสดงใน รูปที่ 2 และ 3 พบว่าปัจจัยด้านชนิดของเอนไซม์ มีผลต่อค่าสว่างของสี $\left(L^{*}\right)$ ค่าความเป็นสีแดง $\left(a^{*}\right)$ ค่า ความเป็นสีเหลีอง $\left(b^{*}\right)$ และปริมาณไลโคปินอย่างมี นัยสำคัญทางสถิติ $(p \leq 0.05)$ โดยมีค่าในช่วง $31.91-$ $37.96,19.83-30.42$ และ $37.49-49.01$ และ $23.90-55.07$ มิลลิกรัมต่อ 100 กรัมน้ำหนักแห้ง ตาม ลำดับ พบว่าเนี้อมะเขือเทศที่ย่อยด้วยเอนไซม์เซลลูเลส มีค่าสี a^{*} และ b^{*} และปริมาณไลโคปินสูงกว่าเนื้อมะเขือเทศ ย่อยด้วยเอนไซม์เพคติเนสทั้งนี้เนื่องจากเอนไซม์เพคทิเนส มีสมบัติในการย่อยสลายสารเพคตินที่หุ้มเซลล์เนื้อ มะเขือเทศออกส่วนเอนไซม์เซลลูเลสมีสมบัติในการย่อย สลายเซลล์เนื้อมะเขือเทศทำให้ไลโคปินที่แทรกอยู่ในเซลล์ เคลื่อนที่ออกมาได้มากกว่า $[20,21]$ ส่วนปัจจัยด้านความ

เข้มข้นของเอนไซม์ และระยะเวลาในการย่อยพบว่าไม่มี ผลต่อค่าความสว่างของสี (L^{*}) ค่าความเป็นสีเหลือง $\left(b^{*}\right)$ แต่มีผลต่อค่าความเป็นสีแดง $\left(a^{*}\right)$ และ ปริมาณไลโคปิน ในเนื้อมะเขือเทศ แต่มีแนวโน้มเพิ่มขึ้นตามระดับเอนไซม และเวลาการย่อยที่เพิ่มขึ้นส่วนค่าสี L^{*} และ b^{*} มีแนวโน้ม ลดลงเมื่อปริมาณเอนไซม์เพิ่มมากขึ้นและระยะเวลาย่อย นานขึ้นส่วนปัจจัยร่วมระหว่างชนิดเอนไซม์ความเข้มข้น ของเอนไซม์และระยะเวลาการย่อยต่อค่าสีและปริมาณ ไลโคปินพบว่าการสกัดไลโคปินจากเนื้อมะเขือเทศโดยการ ย่อยด้วยเอนไซม์เพคติเนสที่ระดับร้อยละ 0.3 นาน 2 ชั่วโมงมีปริมาณไลโคปินไม่แตกต่างอย่างมีนัยสำคัญทาง สถิติ ($p>0.05$) กับสิ่งทดลองที่ย่อยนาน 3 ซั่วโมง ส่วน ตัวอย่างที่ย่อยด้วยเอนไซม์เซลลูเลสที่ระดับร้อยละ 0.2 นาน 3 ชั่วโมง มีปริมาณไลโคปิน (54.88 มิลลิกรัม/ 100 กรัมตัวอย่างมาตรฐานแห้ง) จึงคัดเลือกสิ่งทดลองที่ย่อย ด้วยเอนไซม์เพคติเนสที่ระดับร้อยละ 0.3 นาน 2 ชั่วโมง แล้วนำไปย่อยต่อด้วยเอนไซม์เซลลูเลสที่ระดับร้อยละ 0.2 นาน 3 ชั่วโมง ไปเตรียมผลมะเขือเทศเพื่อผลิตไลโคปีนผล จากมะเขือเทศด้วยวิธีการทำแห้งแบบแช่เยือกแข็ง

a. b.. อักษรที่ต่างกันมีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($p \leq 0.05$)

รูปที่ 2 ผลรวมของปัจจัยด้านชนิดเอนไชม์ ความเข้มข้น และระยะเวลาในการย่อย ที่มีต่อค่าสีและ ปริมาณไลโคบินในเนื้อมะเขือเทศ

a.อักษรที่ต่างกันมีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p} \leq 0.05$)

รูปที่ 3 ผลของปฏิกิริยาสัมพันธ์ระหว่างชนิดเอนไซม์ ความเข้มข้น และระยะเวลาในการย่อย ที่มีต่อค่าสีเนื้อมะเขือเทศ

a. . อักษรที่ต่างกันมีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p} \leq 0.05$)

รูปที่ 4 ผลของปฏิกิริยาสัมพันธ์ระหว่างชนิดเอนไซม์ ความเข้มข้น และระยะเวลาในการย่อย ที่มีต่อ ปริมาณไลโคปินในเนื้อมะเชีอเทศ
3.4 ผลของปริมาณมอลโตเด็กซ์ตรินที่มีต่อค่าสีและ ปริมาณไลโคปินในมะเชือเทศผง

ผลการเติมมอลโตเด็กซ์ตรินที่ระดับ 0510 15 และ 20 ของสารละลายเนื้อมะเขือเทศ ที่ผ่านการ สกัดไลโคปินด้วยการย่อยด้วยเอนไซม์เพคติเนสที่ระดับ ร้อยละ $0.3(\mathrm{v} / \mathrm{w})$ นาน 2 ชั่วโมง และทำการย่อยต่อด้วย เอนไซม์เซลลูเลสที่ระดับร้อยละ $0.2(\mathrm{v} / \mathrm{w})$ นาน 3 ชั่วโมง ได้ผลดังแสดงในตารางที่ 5 และ 6 พบว่ามะเขือเทศผง ที่ได้มึปริมาณผลผลิตมะเขือเทศผงที่ได้ปริมาณความชื้น ปริมาณไลโคปีน ค่าสี $L^{*} a^{*}$ และ b^{*} ความหนาแน่น (กรัม/มิลลิลิตร) และค่าการกระจายตัวและกำลังการพองตัว (กรัม/กรัม) แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p \leq 0.05$) โดยค่าคุณภาพดังกล่าวมีแนวโน้มลดลงเมื่อเพิ่มปริมาณ

มอลโตเด็กซ์ตรินส่วนค่าร้อยละของการละลายได้พบว่า ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p}>0.05$) เลือกต้วอย่างมะเขือเทศผงที่เติมมอลโตเด็กซ์ตรินที่ระดับ ร้อยละ 5 ซึ่งมีสมบัติทางเคมีและกายภาพที่ดี ไม่จับตัว เป็นก้อนเมื่อเก็บในถุงอลูมิเนียมฟลอย์ ณ อุณหภูมิห้อง นาน 1 เดือน ยังมีปริมาณไลโคปิน 65.86 มิลลิกรัม/ 100 กรัมมาตรฐานแห้ง ความชื้นร้อยละ 13.54 ให้ ปริมาณผผลผลิตมะเขือเทศผงที่ได้ร้อยละ 9.94 ของสาร สกัดไลโคบินเริ่มต้น มีค่าสี $L^{*} a^{*}$ และ b^{*} เท่ากับ 52.06 25.4325 .43 มีค่าความหนาแน่น ค่าการกระจายตัว และ กำลังการพองตัว 0.27 (กรัม/มิลลิลิตร)) 80 และ 2.94 (กรัม/กรัม) ตามลำดับ

ตารางที่ 5 ผลของระดับมอลโตรเด็กช์ดรินที่มีต่อปริมาณผลผลิตที่ได้ ปริมาณความชึ้น และ ปริมาณไลโดปินในมะเขือเทศผงที่ทำแห้งแบบแช่เยือกแข็ง

Maltodextrin addition $(\% \mathrm{w} / \mathrm{w})$	Production	Moisture	Lycopene content
0	yield (\%)	content (\%)	$(\mathrm{mg} / 100 \mathrm{gdb})$
5	$4.73 \pm 0.98^{\mathrm{e}}$	$16.73 \pm 0.06^{\mathrm{d}}$	$79.88 \pm 7.29^{\mathrm{d}}$
10	$9.94 \pm 0.74^{\mathrm{d}}$	$13.54 \pm 0.46^{\mathrm{c}}$	$65.86 \pm 0.87^{\mathrm{b}}$
15	$15.65 \pm 0.54^{\mathrm{c}}$	$7.52 \pm 0.33^{\mathrm{b}}$	$30.08 \pm 0.79^{\mathrm{c}}$
20	$22.12 \pm 0.88^{\mathrm{b}}$	$4.98 \pm 0.06^{\mathrm{a}}$	$19.80 \pm 1.22^{\mathrm{d}}$
$25.13 \pm 0.73^{\mathrm{a}}$	$4.35 \pm 0.21^{\mathrm{a}}$	$11.31 \pm 1.46^{\mathrm{d}}$	

a ...อักษรที่ต่างกันในแนวตั้งมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p} \leq 0.05$)

ตารางที่ 6 ผลของระดับมอลโตรเด๊กช์ตรินที่มีต่อสมบัติทางกายภาพของมะเขือเทศผงที่ทำแห้งแบบแซ่เยือกแข็ง

Maltodextrin addition (\% w/w)	Color			Bulk density (g/mL)	Dispensability (\%)	Swelling power (g / g)	Solubility (\%)
	L^{*}	a^{*}	b* *				
0	$48.40^{\text {a }}$	$28.50^{\text {a }}$	$39.03^{\text {a }}$	$0.25^{\text {e }} \pm 0.00$	$100^{\text {a }} \pm 0.00$	$3.90^{\text {a }} \pm 0.08$	$4.86 \pm 0.00^{\text {ns }}$
5	$52.06{ }^{\text {b }}$	$25.43^{\text {b }}$	$35.61{ }^{\text {b }}$	$0.27^{\text {d }} \pm 0.01$	$80^{\text {b }} \pm 0.00$	$2.94{ }^{\text {b }} \pm 0.05$	4.86 ± 0.04
10	$63.29^{\text {c }}$	$18.12^{\text {c }}$	$32.46{ }^{\text {c }}$	$0.40^{\text {a }} \pm 0.01$	$46^{c} \pm 0.00$	$1.88{ }^{\circ} \pm 0.10$	4.86 ± 0.03
15	$68.20{ }^{\text {d }}$	$14.06^{\text {d }}$	$30.58{ }^{\text {d }}$	$0.36{ }^{\text {b }} \pm 0.01$	$30^{\text {d }} \pm 1.41$	$1.40{ }^{\text {d }} \pm 0.22$	4.85 ± 0.04
20	$71.32^{\text {e }}$	$11.76{ }^{\text {e }}$	$28.81{ }^{\text {e }}$	$0.34{ }^{\text {c }} \pm 0.01$	$25^{\bullet} \pm 0.00$	$1.35{ }^{\text {d }} \pm 0.16$	4.85 ± 0.00

กะไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p>0.05$)
a. . ..-อักษรที่ต่างกันในแนวตั้งมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p \geq 0.05$)

4. สรุปผลการทดลอง

ผลมะเขือเทศพื้นเมืองที่เหมาะสมในการสกัดไลโคบิน คือ พันธุดีเป๋อ เนื่องจากมีปริมาณไลโคคินสูงสุด และมีผิว เปลือกบางเมื่อนำไปแยกเนื้อมะเขือเทศโดยการลวกที่ผล มะเขีอเทศที่อุณหภูมิ 95 องศาเซลเชียส นาน 10 นาทีแล้ว แยกเนื้อมะเขือเทศต้วยเครื่องแยกแบบเลียววหมุน นำเนื้อ มะเขือเทศทีได้ไปย่อยดัวยเอนไชม์เพคติเนส (ร้อยละ 0.2 นาน 2 ชั่วโมง) และย่อยต่อเนื่องด้วยเอนไชม์ เซลลูเลส (ร้อยละ 0.2 นาน 3 ชั่วโมง) หยุดการทำงานของเอนไมม์ ต้วยการดัมที่อุณหภูมิ 95 องศาเซลเชียส นาน 15 นาที แล้วเดิมมอลโโเดดด์ช์ตริน ที่ระดับ้อยละ 5 ของสารละลาย มะเขือเทศที่ย่อยสกัดไลโคปินได้ ไปทำแห้งด้วยวิธีการ ทำแห้งแบบแช่เยือกแข็ง ผลผลิตมะเขือเทศผงที่ได้ มี ปริมาณไลโคปิน 65.86 มิลลิกรัม/100 กรัมตัวอย่าง มาตรฐานแห้ง

5. กิตติกรรมประกาศ

คณะผู้วิทับขอขอบคุณโครงการสสเสริมการผลิตผลงาน วิจัย ในกลุ่ม Hands on Researcher Track 2 (สัญญา เลขที่ HR \# $2 \mathrm{~L}-011$) มหาวิทยาลัยเทคโนโลยีราชมงคล ล้านนา ที่สนับสนุนงบประมาณการดำเนินงานและเผย แพร่ผลงานวิจัย

6. เอกสารอ้างอิง

1. Riadh, I., Chafik, H., Marcello, S. L., Imen, T., and Giuseppe D., 2011, "Antioxidant activity and bioactive compound changes during Fruit ripening ofhigh lycopene tomato cultivars", Journal of Food Composition and Analysis, Vol. 24, pp: 588-595.
2. Stahi, W., and Sies, H., 1996, "Perspective in Biochemistry and Biophysics., Lycopene: a Biologically Important Carotenoid for Humans", Journal of Biochemistry Biophysics, Vol. 336, pp. 1-9.
3. Binoy, G., Charanjit, K., Khurdiya, D.S., Kapoor, H.C., 2004, "Antioxidants in tomato (Lycopersiumesculentum) as a function of genotype", Journal of Food Chemistry, Vol. 84, pp. 45-51.
4. Kim,J.Y., Paik,J.K., Kim, O.Y., Park, H.P., Lee,J.H., Jang,Y., Lee,J.H., 2011, "Effects of lycopene supplementation on oxidative stress and markers ofendothelial function in healthy men", Atherosclerosis Journal, Vol. 215, pp. 189-195.
5. Inmaculada, N.G., Veronica, G.V., Javier, G.A., and Periago, M., 2011, "Chemical profile, functional and antioxidant properties of tomato peel fiber", Journal of Food Research International, Vol. 44, pp. 1528-1535.
6. Manashi, D. P., and Charu L. M., 2011, "Physicochemical properties of five different tomato cultivars of Meghalaya and their suitability in food processing", African Journal of Food Science Vol. 5 (12), pp. 657-667.
7. Ramandeep, K.T. and Geoffrey, P. S., 2005, "Antioxidant activity in differentfractions of tomatoes", Food Research International Journal, Vol. 38, pp. 487-494.
8. Sheetal, M.C. and Laxmi, A., 2007, "Enzyme aided Extraction of Lycopene from Tomato Tissues", Food Chemistry Journal, Vol. 102, pp. 77-81.
9. Kanyakahm, K. and Uriyapongson, J., 2010, "Lycopene extraction from tomato waste by various enzyme and organic acid", Journal of Agricultural Science KasetsartUniversity, Vol. 41(3/1) (special), pp. 289-292. (In Thai)
10. Rustia, J.M. 2003. Spray-drying of tomato (Lycopersiconlycopersicum (L.) Karsten). Master thesis of University Library, University of the Philippines at Los Baños (Philippines) UPLB.
11. Sotikul, A., Suwatthi, W., Boonta,T., and Manisara T., 2010, "Development and improved local tomato and pumpkin line in raining season on 2010", Report of completed research, ATRI, Rajamangala University of Technology Lanna.pp 60-61. (In Thai)
12. AOAC., 2005, "Official Method of Analysis AOAC International $18^{\text {th }}$ ed". The Association Official Analytical Chemists, Washington D.C., 850-1030.
13. Davis, A.R., Fish, W.W. and Perkins, P., 2003, "A rapid spectrophotometric method for analyzing lycopene content in tomato product", Journal of Postharvest Biology and Technology. 28. 425-430.
14. Jinapong, N., Suphantharika, M. and Jamnong, P 2008, "Production of instant soymilk powders by ultra-filtation, spray drying and fluidized bed agglomeration", Journal of Food Engineering, Vol. 84. pp. 194-205.
15. Schoch, T.J., 1964, "Swelling Power and Solubility of Granular Starches", In: Methods in Carbohydrate Chemistry, Whistier, R.L., R.J. Smith and J.N. Be Miller (Eds.). Vol. 4, Academic Press, New York, USA., pp: 106-108.
16. Fabiano R. B.C., Derly J. H.S., Paulo C.S., 2010, "Quality of Tomato grown under a protected environment and field conditions", IDSIA (Chile) Mayo-Agosto. Vol. 28 (2), pp. 75-82.
17. Arias; R., T,C.Lee., L. Logendra and H. Janrs, 2000, "Correlation of lycopene measure by HPLC with the L^{*}, a^{*}, b^{*} color readings of a hydroponic tomato and the relationship of
maturity with color and lycopene content", Journal of Agricultural and Food Chemistry, Vol. 48, pp. 1607-1702.
18. Louis C.L., Salma I.Ai H., Jube B. and Madduri V. R., 2010, "Assessment of lycopene content of fresh tomatoes (Lycopersiconesculentum Mill.) and tomato products in the United Emirates, Journal of Food, Agricultural \& Environment, Vol. 8 (3\&4), pp. 142-147.
19. Das, R.D., Hossain, T., Sultana, M.M., Sarwar, G.S.H.M. and Hafiz, M.H.R., 2011, "Effect of different sowing time on the quality of tomato varities", Bangladesh Research Publications Journal, Vol. 6(1), pp. 46-51
20. Galicia R.M., VerdeR., Ponce E.,. González R.O. SaucedoC. and Guerrero I., 2008, "stability of lycopene in cv. saladette tomatoes (Lycoper siconesculentum Mill.) stored under different conditions". Revista Mexicana de IngenieríaQuímica. Vol. 7, No. 3, pp. 253-262.
21. Tran, M.H., Nguyen, D., Zabaras L., and Vu,T.T., 2008, "Process development of Gac powder by using different enzymes and drying techniques", Journal of Food Engineering, Vol. 85, pp. 359-365.
22. Sheetal, M.C. and Laxmi, A., 2007, "Enzyme aided Extraction of Lycopene from Tomato Tissues", Food Chemistry Journal, Vol. 102, pp. 77-81

[^0]: * Corresponding author. E-mail: pongjanta@rmutlac.th

 1 นักศึกษาปริญญาโท สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์เละเทคโนโลยีการเกษตร
 2 สู้ช่วยศาสตราจารย์ สาขาวิชาวิทยาศาสตร์การอาหาร สถาบันวิจัยเทคโนโลยีเกษตร

[^1]: * Corresponding author. E-mail: pongjanta@rmutlac.th

 1 Master's student, Faculty of Agricultural Science and Technology.
 2 Assistant Professor, Department of Food Science, Agricultural Technology Research Institute.

[^2]: * ค่าสหสัมพันธ์ที่ด่างกันอย่างมีนัยสำคัญที่ระดับ 0.05 (2-tailed) $\mathrm{N}=20$
 ** ค่าสหสัมพันธ์ที่ต่างกันอย่างมีนัยสำคัญที่ระดับ 0.01 2-tailed $N=20$

[^3]: nsไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p>0.05$)
 a, b อักษรที่ต่างกันในแนวตั้งูมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p} \leq 0.05$) สำนกกหอสมุดและศูนยสารสนเทศวทยาศาสตร์และเทคโนไลรี

